Computational evaluation of the roles of Na+ current, iNa, and cell death in cardiac pacemaking and driving.

نویسندگان

  • H Zhang
  • Y Zhao
  • M Lei
  • H Dobrzynski
  • J H Liu
  • A V Holden
  • M R Boyett
چکیده

Voltage-dependent sodium (Na(+)) channels are heterogeneously distributed through the pacemaker of the heart, the sinoatrial node (SA node). The measured sodium channel current (i(Na)) density is higher in the periphery but low or zero in the center of the SA node. The functional roles of i(Na) in initiation and conduction of cardiac pacemaker activity remain uncertain. We evaluated the functional roles of i(Na) by computer modeling. A gradient model of the intact SA node and atrium of the rabbit heart was developed that incorporates both heterogeneities of the SA node electrophysiology and histological structure. Our computations show that a large i(Na) in the periphery helps the SA node to drive the atrial muscle. Removal i(Na) from the SA node slows down the pacemaking rate and increases the sinoatrial node-atrium conduction time. In some cases, reduction of the SA node i(Na) results in impairment of impulse initiation and conduction that leads to the SA node-atrium conduction exit block. Decrease in active SA node cell population has similar effects. Combined actions of reduced cell population and removal of i(Na) from the SA node have greater impacts on weakening the ability of the SA node to pace and drive the atrium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome.

RATIONALE Familial sick sinus syndrome (SSS) has been linked to loss-of-function mutations of the SCN5A gene, which result in decreased inward Na(+) current, I(Na). However, the functional role of I(Na) in cardiac pacemaking is controversial, and mechanistic links between mutations and sinus node dysfunction in SSS are unclear. OBJECTIVE To determine mechanisms by which the SCN5A mutations im...

متن کامل

The arrhythmogenic consequences of increasing late INa in the cardiomyocyte.

This review presents the roles of cardiac sodium channel NaV1.5 late current (late INa) in generation of arrhythmic activity. The assumption of the authors is that proper Na(+) channel function is necessary to the maintenance of the transmembrane electrochemical gradient of Na(+) and regulation of cardiac electrical activity. Myocyte Na(+) channels' openings during the brief action potential up...

متن کامل

SCN5A and sinoatrial node pacemaker function.

The SCN5A gene encodes specific voltage-dependent Na+ channels abundant in cardiac muscle that open and close at specific stages of cardiac activity in response to voltage change, thereby controlling the magnitude and timecourse of voltage-dependent Na+ currents (iNa) in cardiac muscle cells. Although iNa has been recorded from sinoatrial (SA) node pacemaker cells, its precise role in SA node p...

متن کامل

The Possible Role of TNF-alpha in Physiological and Pathophysiological Cardiac Hypertrophy in Rats

Pathological cardiac hypertrophy was produced by partial abdominal aortic constriction (PAAC) for 4 wk, while physiological cardiac hypertrophy was produced by chronic swimming training (CST) for 8 wk in rats. Pentoxifylline (30 mg/kg, 300 mg/kg i.p., day-1) treatment was started three days before PAAC and CST and it was continued for 4 wk in PAAC and 8 wk in CST experimental model. The left ve...

متن کامل

Evaluation of Ice Nucleation Activity (INA) and INA Gene Detection in the Bacteria Isolated from Pistachio Trees in Kerman Province, Iran

IIce nucleation active (INA) bacteria are common epiphytic inhabitants that cause frost damage in many plants in the near-zero temperatures. Yet, no studies were found in ice nucleation bacteria associated with pistachio trees. In our earlier study some INA strains were identified and reported. These were assigned as Pseudomonas fragi, P. putida, P. moraviensis and<em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 1  شماره 

صفحات  -

تاریخ انتشار 2007